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Abstract. Pulmonary hypertension (PH) is a life-threatening condition
marked by elevated mean pulmonary arterial pressure (mPAP), with high
morbidity and mortality. Right heart catheterization (RHC) is the gold
standard for mPAP measurement because it provides direct and accurate
hemodynamic assessment. However, RHC necessitates specialized facili-
ties and continuous monitoring, which limits its accessibility, especially
in community hospitals. This study introduces a deep learning model
that leverages DINOv2 to estimate mPAP from chest X-ray and ECG
images. The DINOv2-based chest X-ray encoder is fine-tuned to extract
high-dimensional representations followed by feature fusion with those
extracted from ECG images using a light-weight convolutional neural
network, enabling the model to generate accurate mPAP predictions. The
model was trained on 290 RHC invasive mPAP measurements from 163
patients and subsequently tested on 71 measurements from 38 patients
at a town-based hospital. Performance evaluation using Bland-Altman
analysis and regression correlation with invasive mPAP measurements
showed low bias (-1.55 mmHg, limits of agreement =[-21.34, 18.24]), and
moderate agreement (R2 = 0.43). Moreover, the model demonstrates the
potential for tracking long-term disease progression trajectories by cor-
relating longitudinal changes in imaging features with mPAP variations.
The model is deployable as a web tool, enabling scalable, non-invasive
PH screening and monitoring with routine CXR and ECG, particularly
in settings with limited RHC access.
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1 Introduction

Pulmonary hypertension (PH) is a progressive and life-threatening cardiovascu-
lar disorder defined by elevated mean pulmonary artery pressure (mPAP) equal
† Corresponding Author.
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or higher than 20 mmHg at rest. PH proceeds to right ventricular failure and
mortality if undiagnosed or untreated [10]. Early identification of PH is critical
since targeted therapies can substantially improve patient outcomes. Neverthe-
less, diagnosis is frequently delayed due to non-specific symptoms and limited
access to advanced diagnostic tools in many healthcare settings [6].

The current gold standard for PH diagnosis and mPAP measurement is
right heart catheterization (RHC). Although RHC provides a direct hemody-
namic assessment, its invasive nature, associated procedural risks, high costs, and
limited availability—-especially in low-resource environments—-pose significant
challenges [7]. In non-invasive clinical practice, transthoracic echocardiography
(TTE) is commonly employed to estimate pulmonary pressures via Doppler-
derived tricuspid regurgitation velocity. However, TTE suffers from operator
dependency, unreliability in up to 30% of cases, and a tendency to overestimate
pulmonary pressures in patients with concurrent lung disease [4,11].

Recent advances in deep learning have demonstrated the feasibility of pre-
dicting PH and elevated pulmonary pressures from non-invasive data. For in-
stance, machine learning models applied to 12-lead ECGs have identified latent
markers of pulmonary vascular pathology, while deep learning models trained on
cardiac magnetic resonance imaging (CMR) have achieved accurate PH classifi-
cation that slightly outperforms standard diagnostic metrics, delivering results
within seconds [8,5] . Although resource intensive CMR was used, these stud-
ies underscore the potential of AI-driven, non-invasive PH detection. Moreover,
previous models have typically relied on a single imaging modality, which limits
their ability to capture complementary information that could be obtained by
integrating multiple data sources. A promising solution lies in multi-modal AI
approaches that integrate both structural and electrophysiological markers, such
as those derived from chest X-ray (CXR) and ECG data. Although CXR and
ECG lack the specificity of traditional diagnostics, they can capture secondary
disease markers—including pulmonary artery enlargement, right ventricular hy-
pertrophy, and electrical conduction abnormalities—that are often challenging
to quantify manually. We hypothesize that deep learning models can extract and
interpret these subtle patterns, correlating them with hemodynamic abnormali-
ties and disease progression [11].

The field of computer vision has been transformed by foundation models—large-
scale, self-supervised models that learn general-purpose visual representations.
Among these, DINOv2, a self-supervised Vision Transformer trained on 142 mil-
lion images, has exhibited strong generalization across diverse tasks without the
need for labeled data during pre-training [3,2,9]. The robustness and scalability
of DINOv2 render it particularly attractive for medical imaging applications,
where labeled data are frequently limited.

In this study, we introduce a multi-modal deep learning framework for PH
screening and monitoring that combines chest X-rays and images of ECG sig-
nals to predict continuous mPAP values non-invasively. Our model is designed
for deployment in low-computation environments, utilizing standard X-ray and
scanned ECG images, and it can be accessed publicly via web platforms and
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Fig. 1. Multi-Modal Deep Learning Framework for mPAP Prediction and Web-Based
Deployment. (A) The proposed pipeline for estimating mean pulmonary arterial pres-
sure (mPAP) from chest X-ray and 12-lead electrocardiogram (ECG) images. A pre-
trained foundation model (DINOv2) extracts high-level features from the chest X-ray,
while a convolutional neural network (CNN) processes temporally aligned ECG lead
images. The extracted feature representations are combined to predict mPAP. (B) A
web-based mPAP prediction tool that allows users to upload chest X-ray and ECG
images for real-time estimation of mPAP, demonstrating the feasibility of deploying
the model for potential clinical use in resource-limited settings.

open-source repositories, ensuring its availability in resource-limited settings
(Fig. 1). We propose a DINOv2-based foundation model for chest X-ray analysis,
integrated with a convolutional ECG encoder, to directly estimate mPAP. Model
performance is validated using Bland-Altman analysis, linear regression, and
subgroup analyses (e.g., smokers versus non-smokers) to assess predictive con-
sistency. Additionally, we demonstrate the model’s capacity to track estimated
mPAP trajectory over time and compare with repeated invasive measurements
in PH patients. We assess the feasibility of deploying the model via a web-based
prototype, enabling broader testing and feedback from the various clinical and
research settings.

2 Methods

2.1 Data Description

This study utilized a retrospective dataset from a Sapporo Medical University
Hospital. This study was approved by the Institutional Review Board (IRB)
(Protocol: 2358678) and utilized retrospectively collected data. Our dataset con-
sists of patients clinically diagnosed with PH who underwent both chest X-ray
and ECG examinations close to the time of invasive hemodynamic testing. Inclu-
sion criteria required that a frontal chest radiograph (posteroanterior view) and
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a standard 12-lead ECG were available within a 7-days of a right heart catheteri-
zation measuring mPAP. The final dataset included 201 PH patients (age 65±16
years, 54% female), with a total of 361 records of mPAP measurements, X-rays,
and ECG. PH etiologies in the cohort were mixed, including Group 1 PAH,
Group 2 PH (due to left heart disease), and Group 3 PH (due to lung disease)
[1], reflecting a real-world case mix.

For each patient, we obtained the digital chest X-ray image and a digitized
ECG recording. The 12-lead ECGs (originally recorded on paper or electroni-
cally) were converted into a scanned image format for input into the vision model.
For training, the images underwent preprocessing: chest X-rays were rescaled to
a uniform size (512x512 pixels) and normalized, and 12-lead ECG images were
similarly resized to a uniform size (224x48) per lead, and concatenated to chan-
nel dimension. We paired each X-ray with its corresponding ECG image and the
ground-truth mPAP value (measured by RHC). The 361 records were split into
training, validation, and test sets (70% train, 10% val, 20% test) ensuring that
each patient appears in only one set.

2.2 Multi-Modal mPAP Regression Model

The proposed model estimates mPAP by integrating information from chest
X-rays and 12-lead ECG images. The chest X-ray branch employs a DINOv2-
based Vision Transformer, pre-trained on 142 million images, as a robust feature
extractor for pulmonary and cardiovascular structures. In our implementation,
the DINOv2 backbone is wrapped within a custom fine-tuning module that
reshapes its output into a 1024-dimensional embedding.

During training, the DINOv2 is optimized on 224×224 chest patches ob-
tained by randomly cropping from 512×512 resized images. When ECG images
are provided, the ECG feature extractor branch extracted a 128-dimensional
vector via a series of convolutional layers. The first layer accepts an input with
36 channels (representing the 12-lead ECG image with RGB channels) and out-
puts 64 feature maps using a kernel size of 3×3, stride 1, and padding 1. This
is followed by batch normalization, ReLU activation, and a 2×2 max-pooling
operation. The channel depth increases to 128 and 256 for the second and third
blocks, respectively.

The final ECG-features are projected with an adaptive average pooling layer
reducing the spatial dimensions to 1×1, and a fully connected layer projects the
256-dimensional output to a 128-dimensional feature vector. This branch, there-
fore, yields a 128-dimensional embedding that captures key waveform features
indicative of right ventricular strain and electrical conduction abnormalities.

For each 224×224 chest patch, the DINOv2 backbone produces a 1024-
dimensional feature, which is concatenated with the ECG feature. The individual
feature vectors of the patch are concatenated into a single fused feature vector
with a total dimensionality of dfused = dchest + dECG = 1024 + 128 = 1152. This
fused representation is processed by a regression head that first reduces the di-
mensionality to 592 through a fully connected layer, applies a ReLU activation,
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and finally maps the features to a single scalar output representing the mPAP
(in mmHg).

The networks are trained at the same time using the Mean Squared Error
(MSE) loss defined as L = 1

n

∑n
i=1 (ŷi − yi)

2, where ŷi is the predicted mPAP
and yi is the ground-truth measurement obtained from right heart catheteriza-
tion. Optimization is performed for 20 epochs using the Adam optimizer with a
learning rate of 5× 10−5.

In validation/testing, the full 512×512 chest X-ray is partitioned into a
3 × 3 grid of 224×224 patches. A patch-level regressor then predicts an mPAP
value for each patch; the final chest-based mPAP estimate is computed as the
average of patch-wise predictions.

For the model deployment, we developed a web-based mPAP predic-
tion tool that enables users to upload chest X-ray and 12-lead ECG images
for real-time estimation of mPAP. The web-based mPAP prediction tool lever-
ages a multi-modal deep learning model that integrates DINOv2-based Vision
Transformer with complementary ECG-derived features, estimating mPAP. This
tool utilizes the Hugging Face API for deployment in resource-limited settings,
thereby offering a cost-effective, rapid, and accessible solution for clinical decision-
making and patient management (https://github.com/siyeopyoon/PulmoFusion-
mPAP and https://jcharton-mean-pap-api.hf.space).

Evaluation Metrics To assess the impact of different chest X-ray feature ex-
tractors on mPAP prediction accuracy, we conducted experiments comparing
DINOv2, ResNet34, and VGG16 backbones. Moreover, we evaluated the per-
formance of the multi-modal framework both with and without the inclusion of
the ECG encoder. Evaluation of the model was performed using a suite of quan-
titative analyses to assess the agreement and accuracy of the predicted mPAP
values against the reference measurements obtained via RHC. A Bland-Altman
plot was generated to identify systematic biases and to define the limits of agree-
ment between the two methods. In addition, the Mean Absolute Error (MAE)
was computed as MAE = 1

n

∑n
i=1 |ŷi − yi|, providing a direct measure of the

average discrepancy (in mmHg) between predictions and true values. Finally, a
linear regression analysis was conducted between the predicted and catheterized
mPAP measurements, yielding key statistical parameters such as the coefficient
of determination (R2) and the regression slope.

3 Results

Figure 2 presents a Bland-Altman plot that compares the differences between
predicted and measured mPAP values against their averages. The plot includes
a bias line representing the mean difference (-1.55 mmHg) and dashed lines that
indicate the 95% limits of agreement (from -21.34 to 18.24 mmHg). Table 1
details the performance of different deep learning models for mPAP prediction.
Standalone imaging models (VGG16, Resnet34, DinoV2) achieved regression
slopes of 0.15, 0.03, and 0.09 with correlation coefficients (R2) of 0.13, 0.02, and

https://github.com/siyeopyoon/PulmoFusion-mPAP
https://github.com/siyeopyoon/PulmoFusion-mPAP
https://jcharton-mean-pap-api.hf.space
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Fig. 2. The measurement agreement of mean pulmonary artery pressure between right
heart catheterization and AI-based prediction with the usage of Chest X-ray and ECG
image. (A) Bland-Altman plots show bias and limits of agreement (±1.96 SDs), the
solid red line and and red dotted lines, respectively. In (B) linear regression the corre-
lation coefficient (R2) and slope (y) are shown.

0.06, respectively. The incorporation of ECG data led to improved performance;
notably, the DinoV2+ECG model reached a regression slope of 0.73 and an
R2 of 0.43, along with a mean absolute error of 8.20±6.03 and a bias of -1.55
mmHg (limits of agreement: -21.34 to 18.24 mmHg). These numerical results
demonstrate that the integration of ECG with chest X-ray data enhances the
accuracy of non-invasive mPAP estimation.

To assess the model’s ability to monitor changes over time, we selected a
patient from our cohort who underwent multiple imaging studies and corre-
sponding RHC measurements over a period from Day 0 to Day 4513. For this
case, our trained model was applied to each paired chest X-ray and ECG image,
and predicted mPAP values were recorded at each time point. As illustrated
in Figure 3, the patient initially showed high mPAP values together with clear
ECG indicators of right ventricular strain (highlighted by the red circle in panel
(B)). Over time, as the ECG features indicative of RV strain diminished, the
predicted mPAP values decreased correspondingly. This observation provides a
concrete example of how changes in RV strain may be associated with alterations
in pulmonary arterial pressure.
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Table 1. Performance evaluation of deep learning models for mPAP prediction. Re-
ported are mean absolute error (MAE ± SD), regression slope, R², and bias with
limits of agreement for standalone imaging models (VGG16, Resnet34, DinoV2) and
their counterparts augmented with ECG data.

Method MAE ↓ Regression Slope Correlation R2 Bias [LoA%]
VGG16 8.77 ± 6.63 0.15 0.13 -2.41 [-26.52, 18.69]
Resnet34 10.14 ± 6.46 0.03 0.02 -3.92 [-26.52, 18.69]
DinoV2 9.05 ± 6.70 0.09 0.06 -1.28 [-23.31, 20.75]
VGG16+ECG 7.53 ± 6.26 0.24 0.35 -2.45 [-21.13, 16.21]
Resnet34+ECG 8.62 ± 6.35 0.71 0.40 -2.19 [-22.82, 18.44]
DinoV2+ECG 8.20 ± 6.03 0.73 0.43 -1.55 [-21.34, 18.24]

Fig. 3. Comparison of measured mean pulmonary artery pressure (mPAP) from right
heart catheterization (black crosses) and predicted mPAP from the proposed DI-
NOv2+ECG model (red circles) over 4513 days, illustrating the framework’s ability
to track disease progression. Chest X-ray and ECG images at Day 0, 2379, and 4345
reveal progressive cardiopulmonary changes, including right ventricular strain (red cir-
cle) captured by ECG morphology. These findings demonstrate how our proposed model
can non-invasively estimate mPAP from routine clinical imaging and follow pulmonary
hypertension trajectories using chest X-ray and ECG.

4 Conclusion

We presented a novel approach for non-invasive pulmonary hypertension assess-
ment using a DINOv2 vision foundation model to analyze chest X-ray and ECG
images for mPAP prediction. The proposed model demonstrated high accuracy
in estimating mean pulmonary arterial pressure, with strong correlation and
close agreement to invasive measurements. Through Bland-Altman analysis, we
showed minimal bias and clinically acceptable limits of agreement between the
model’s predictions and right heart catheterization values. We further illustrated
the model’s value by tracking mPAP changes in longitudinal case studies, high-
lighting potential use in monitoring disease progression or treatment response. It
could also be applied retrospectively to prior images to see trends (for example,
reading old X-rays to estimate what mPAP might have been before). Impor-
tantly, the method is non-invasive and repeatable, making it safe for serial use.
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Our model could be integrated into hospital PACS systems or web-based access,
as shown in the example website, Figure 1(B).

While the results are encouraging, our study has several limitations. The
dataset size (201 patients) is relatively modest, drawn from a single center. This
raises concerns about overfitting to specific population characteristics or image
acquisition protocols. Although using DINOv2 should improve generalizability,
the model should be validated on external cohorts (multi-center data) to ensure it
works broadly. Future studies will focus on validating our model across broader
populations and integrating additional data modalities to further improve ro-
bustness and precision. With additional refinement, this foundation model-based
approach has the potential to be implemented as a low-cost, widely accessible
solution for improving pulmonary hypertension care. In essence, our study high-
lights the promise of cross-domain AI models in bridging the gap between simple
diagnostic tests and complex invasive measurements for PH management.
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